Releases: sanjaradylov/scikit-fallback
Releases · sanjaradylov/scikit-fallback
v0.1.1.post0
Now scikit-fallback has a documentation webpage
and works w/ older versions of scikit-learn
, scipy
, and numpy
(#24, #26)!
See also the v0.1.0 release.
v0.1.0
Fixes
- 🐛
skfb.estimators.RateFallbackClassifierCV
accepts only one fallback rate (#11). - 🐞
skfb.metrics.PAConfusionMatrixDisplay
accepts rejector pipelines (#18).
Features
Stable
- Predict-reject recall score
skfb.metrics.predict_reject_recall_score
(#14). - New estimators accept fitted estimators and don't require refitting for inference.
- Support for scikit-learn>=1.0,<=1.2.
- Multi-threshold fallback classification:
skfb.estimators.multi_threshold_predict_or_fallback
andskfb.estimators.MultiThresholdFallbackClassifier
. - Fallback classification based on anomaly detection:
skfb.estimators.AnomalyFallbackClassifier
(#13 and more). - Fallback mode
"ignore"
: don't return or store fallbacks (#16 and more).
Experimental
skfb.estimators.RateFallbackClassifierCV
accepts only one fallback rate (#11).- Error-fallback loss:
>>> from skfb.experimental import enable_error_rejection_loss >>> from skfb.metrics import error_rejection_loss
- Tuned multi-threshold fallback classifier w/ cross-validation:
>>> from skfb.experimental import enable_multi_threshold_fallback_classifier_cv >>> from skfb.estimators import MultiThresholdFallbackClassifierCV
- Utility to summarize confidence scores class-wise.
v0.0.1
🎉 Let's get ready to rumble!
This is the first release of scikit-fallback
and it implements rudimentary tools for supporting and evaluating rejections in classification problems:
sfkb.estimators.ThresholdFallbackClassifier(CV)
andRateFallbackClassifier
for (meta-)classification w/ a reject option.skfb.metrics
for Predict-Fallback metrics, confusion matrices, and curves.skfb.core.array
for NDArray-compatible FBNDArray for storing predictions and fallback masks.