Releases
v0.1.0
Fixes
π skfb.estimators.RateFallbackClassifierCV
accepts only one fallback rate (#11 ).
π skfb.metrics.PAConfusionMatrixDisplay
accepts rejector pipelines (#18 ).
Features
Stable
Predict-reject recall score skfb.metrics.predict_reject_recall_score
(#14 ).
New estimators accept fitted estimators and don't require refitting for inference.
Support for scikit-learn>=1.0,<=1.2.
Multi-threshold fallback classification: skfb.estimators.multi_threshold_predict_or_fallback
and skfb.estimators.MultiThresholdFallbackClassifier
.
Fallback classification based on anomaly detection: skfb.estimators.AnomalyFallbackClassifier
(#13 and more).
Fallback mode "ignore"
: don't return or store fallbacks (#16 and more).
Experimental
skfb.estimators.RateFallbackClassifierCV
accepts only one fallback rate (#11 ).
Error-fallback loss:
>> > from skfb .experimental import enable_error_rejection_loss
>> > from skfb .metrics import error_rejection_loss
Tuned multi-threshold fallback classifier w/ cross-validation:
>> > from skfb .experimental import enable_multi_threshold_fallback_classifier_cv
>> > from skfb .estimators import MultiThresholdFallbackClassifierCV
Utility to summarize confidence scores class-wise.
You canβt perform that action at this time.