Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: search CLF and CBF given lagrangians, binary search the largest inner ellipsoid. #28

Merged
merged 1 commit into from
Jan 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 138 additions & 0 deletions compatible_clf_cbf/clf_cbf.py
Original file line number Diff line number Diff line change
Expand Up @@ -447,6 +447,16 @@ def search_clf_cbf_given_lagrangian(
Optional[float],
solvers.MathematicalProgramResult,
]:
"""
Given the Lagrangian multipliers and an inner ellipsoid, find the clf
and cbf, such that the compatible region contains that inner ellipsoid.

Returns: (V, b, rho, result)
V: The CLF.
b: The CBF.
rho: The certified ROA is {x | V(x) <= rho}.
result: The result of the optimization program.
"""
prog, V, b, rho = self._construct_search_clf_cbf_program(
compatible_lagrangians,
unsafe_regions_lagrangians,
Expand All @@ -473,6 +483,134 @@ def search_clf_cbf_given_lagrangian(
rho_sol = None
return V_sol, b_sol, rho_sol, result

def binary_search_clf_cbf(
self,
compatible_lagrangians: CompatibleLagrangians,
unsafe_regions_lagrangians: List[UnsafeRegionLagrangians],
clf_degree: Optional[int],
cbf_degrees: List[int],
x_equilibrium: Optional[np.ndarray],
kappa_V: Optional[float],
kappa_b: np.ndarray,
barrier_eps: np.ndarray,
S_ellipsoid_inner: np.ndarray,
b_ellipsoid_inner: np.ndarray,
c_ellipsoid_inner: float,
scale_min: float,
scale_max: float,
scale_tol: float,
solver_id: Optional[solvers.SolverId] = None,
solver_options: Optional[solvers.SolverOptions] = None,
) -> Tuple[Optional[sym.Polynomial], np.ndarray, Optional[float]]:
"""
Given the Lagrangian multipliers, find the compatible CLF and CBFs,
with the goal to enlarge the compatible region.

We measure the size of the compatible region through binary searching
the inner ellipsoid. We scale the inner ellipsoid about its center,
and binary search on the scaling factor.

Args:
scale_min: The minimum of the ellipsoid scaling factor.
scale_max: The maximal of the ellipsoid scaling factor.
scale_tol: Terminate the binary search when the difference between
the max/min scaling factor is below this tolerance.

Return: (V, b, rho)
"""

def search(
scale,
) -> Tuple[
Optional[sym.Polynomial],
Optional[np.ndarray],
Optional[float],
solvers.MathematicalProgramResult,
]:
c_new = ellipsoid_utils.scale_ellipsoid(
S_ellipsoid_inner, b_ellipsoid_inner, c_ellipsoid_inner, scale
)
V, b, rho, result = self.search_clf_cbf_given_lagrangian(
compatible_lagrangians,
unsafe_regions_lagrangians,
clf_degree,
cbf_degrees,
x_equilibrium,
kappa_V,
kappa_b,
barrier_eps,
S_ellipsoid_inner,
b_ellipsoid_inner,
c_new,
solver_id,
solver_options,
)
return V, b, rho, result

assert scale_max >= scale_min
assert scale_tol > 0
V, b, rho, result = search(scale_max)
if result.is_success():
print(f"binary_search_clf_cbf: scale={scale_max} is feasible.")
assert b is not None
return V, b, rho

V_success, b_success, rho_success, result = search(scale_min)
assert (
result.is_success()
), f"binary_search_clf_cbf: scale_min={scale_min} is not feasible."
assert b_success is not None

while scale_max - scale_min > scale_tol:
scale = (scale_max + scale_min) / 2
V, b, rho, result = search(scale)
if result.is_success():
print(f"binary_search_clf_cbf: scale={scale} is feasible.")
scale_min = scale
V_success = V
assert b is not None
b_success = b
rho_success = rho
else:
print(f"binary_search_clf_cbf: scale={scale} is not feasible.")
scale_max = scale

return V_success, b_success, rho_success

def in_compatible_region(
self,
V: Optional[sym.Polynomial],
b: np.ndarray,
rho: Optional[float],
x_samples: np.ndarray,
) -> np.ndarray:
"""
Returns if x_samples[i] is in the compatible region
{x | V(x) <= rho, b(x) >= 0}.

Return:
in_compatible_flag: in_compatible_flag[i] is True iff x_samples[i] is
in the compatible region.
"""
in_b = np.all(
np.concatenate(
[
(b_i.EvaluateIndeterminates(self.x, x_samples.T) >= 0).reshape(
(-1, 1)
)
for b_i in b
],
axis=1,
),
axis=1,
)
if V is not None:
assert rho is not None
in_V = V.EvaluateIndeterminates(self.x, x_samples.T) <= rho
return np.logical_and(in_b, in_V)
else:
return in_b

def _calc_xi_Lambda(
self,
*,
Expand Down
176 changes: 159 additions & 17 deletions tests/test_clf_cbf.py
Original file line number Diff line number Diff line change
Expand Up @@ -451,15 +451,7 @@ def test_add_ellipsoid_in_compatible_region_constraint(self):
V_sol = result.GetSolution(V)
rho_sol = result.GetSolution(rho)
b_sol = np.array([result.GetSolution(b_i) for b_i in b])
in_V = V_sol.EvaluateIndeterminates(self.x, x_samples.T) <= rho_sol
in_b = np.concatenate(
[
b_i.EvaluateIndeterminates(self.x, x_samples.T >= 0).reshape((1, -1))
for b_i in b_sol
],
axis=0,
).T
in_compatible = np.logical_and(np.all(in_b, axis=1), in_V)
in_compatible = dut.in_compatible_region(V_sol, b_sol, rho_sol, x_samples)
assert np.all(in_compatible[in_ellipsoid])


Expand Down Expand Up @@ -489,12 +481,35 @@ def setup_class(cls):
cls.kappa_b = np.array([cls.kappa_V])
cls.barrier_eps = np.array([0.01])

def check_unsafe_region_by_sample(self, b: np.ndarray, x_samples):
# Sample many points, make sure that {x | b[i] >= 0} doesn't intersect
# with the i'th unsafe region.
for i, unsafe_region in enumerate(self.unsafe_regions):
unsafe_flag = np.all(
np.concatenate(
[
(
unsafe_region_j.EvaluateIndeterminates(self.x, x_samples.T)
<= 0
).reshape((-1, 1))
for unsafe_region_j in unsafe_region
],
axis=1,
),
axis=1,
)
in_b = b[i].EvaluateIndeterminates(self.x, x_samples.T) >= 0
assert np.all(np.logical_not(unsafe_flag[in_b]))

def search_lagrangians(
self,
) -> Tuple[
mut.CompatibleClfCbf,
mut.CompatibleLagrangians,
List[mut.UnsafeRegionLagrangians],
sym.Polynomial,
np.ndarray,
float,
]:
use_y_squared = True
dut = mut.CompatibleClfCbf(
Expand All @@ -512,7 +527,7 @@ def search_lagrangians(

lagrangian_degrees = mut.CompatibleLagrangianDegrees(
lambda_y=[mut.CompatibleLagrangianDegrees.Degree(x=3, y=0)],
xi_y=mut.CompatibleLagrangianDegrees.Degree(x=0, y=0),
xi_y=mut.CompatibleLagrangianDegrees.Degree(x=2, y=0),
y=None,
rho_minus_V=mut.CompatibleLagrangianDegrees.Degree(x=2, y=0),
b_plus_eps=[mut.CompatibleLagrangianDegrees.Degree(x=2, y=0)],
Expand All @@ -532,7 +547,6 @@ def search_lagrangians(
self.barrier_eps,
)
solver_options = solvers.SolverOptions()
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, 1)
compatible_result = solvers.Solve(compatible_prog, None, solver_options)
assert compatible_result.is_success()

Expand All @@ -550,13 +564,23 @@ def search_lagrangians(
)
]

return dut, compatible_lagrangians_result, unsafe_lagrangians
return (
dut,
compatible_lagrangians_result,
unsafe_lagrangians,
V_init,
b_init,
rho,
)

def test_search_clf_cbf(self):
def test_construct_search_clf_cbf_program(self):
(
dut,
compatible_lagrangians,
unsafe_lagrangians,
_,
_,
_,
) = self.search_lagrangians()
prog, V, b, rho = dut._construct_search_clf_cbf_program(
compatible_lagrangians,
Expand All @@ -569,18 +593,136 @@ def test_search_clf_cbf(self):
barrier_eps=self.barrier_eps,
)
solver_options = solvers.SolverOptions()
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, 1)
solver = solvers.ClarabelSolver()
result = solver.Solve(prog, None, solver_options)
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, 0)
result = solvers.Solve(prog, None, solver_options)
assert result.is_success()
V_result = result.GetSolution(V)
env = {self.x[i]: 0 for i in range(self.nx)}
assert V_result.Evaluate(env) == 0
assert sym.Monomial() not in V.monomial_to_coefficient_map()
assert utils.is_sos(V_result, solvers.ClarabelSolver.id())
assert utils.is_sos(V_result)
assert V_result.TotalDegree() == 2
rho_result = result.GetSolution(rho)
assert rho_result >= 0

b_result = np.array([result.GetSolution(b[i]) for i in range(b.size)])
assert all([b_result[i].TotalDegree() <= 2 for i in range(b.size)])

# Sample many points, make sure that {x | b[i] >= 0} doesn't intersect
# with the i'th unsafe region.
x_samples = 10 * np.random.randn(1000, 2) - np.array([[10, 0]])
self.check_unsafe_region_by_sample(b_result, x_samples)

def test_search_clf_cbf_given_lagrangian(self):
(
dut,
compatible_lagrangians,
unsafe_lagrangians,
V,
b,
rho,
) = self.search_lagrangians()

# Find the large ellipsoid inside the compatible region.
x_equilibrium = np.array([0.0, 0.0])
(
S_ellipsoid_inner,
b_ellipsoid_inner,
c_ellipsoid_inner,
) = dut._find_max_inner_ellipsoid(
V,
b,
rho,
V_contain_lagrangian_degree=mut.ContainmentLagrangianDegree(
inner=-1, outer=0
),
b_contain_lagrangian_degree=[
mut.ContainmentLagrangianDegree(inner=-1, outer=0)
],
x_inner_init=x_equilibrium,
max_iter=10,
convergence_tol=1e-4,
trust_region=1000,
)

V_new, b_new, rho_new, result = dut.search_clf_cbf_given_lagrangian(
compatible_lagrangians,
unsafe_lagrangians,
clf_degree=2,
cbf_degrees=[2],
x_equilibrium=x_equilibrium,
kappa_V=self.kappa_V,
kappa_b=self.kappa_b,
barrier_eps=self.barrier_eps,
S_ellipsoid_inner=S_ellipsoid_inner,
b_ellipsoid_inner=b_ellipsoid_inner,
c_ellipsoid_inner=c_ellipsoid_inner,
)
assert result.is_success()
# Check that the compatible region contains the inner_ellipsoid.
x_samples = np.random.randn(100, 2)
in_ellipsoid = ellipsoid_utils.in_ellipsoid(
S_ellipsoid_inner, b_ellipsoid_inner, c_ellipsoid_inner, x_samples
)
assert b_new is not None
in_compatible = dut.in_compatible_region(V_new, b_new, rho_new, x_samples)
assert np.all(in_compatible[in_ellipsoid])

def test_binary_search_clf_cbf_given_lagrangian(self):
(
dut,
compatible_lagrangians,
unsafe_lagrangians,
V_init,
b_init,
rho_init,
) = self.search_lagrangians()

x_equilibrium = np.array([0.0, 0.0])
(
S_ellipsoid_inner,
b_ellipsoid_inner,
c_ellipsoid_inner,
) = dut._find_max_inner_ellipsoid(
V_init,
b_init,
rho_init,
V_contain_lagrangian_degree=mut.ContainmentLagrangianDegree(
inner=-1, outer=0
),
b_contain_lagrangian_degree=[
mut.ContainmentLagrangianDegree(inner=-1, outer=0)
],
x_inner_init=x_equilibrium,
max_iter=10,
convergence_tol=1e-4,
trust_region=1000,
)

solver_options = solvers.SolverOptions()
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, 0)

V, b, rho = dut.binary_search_clf_cbf(
compatible_lagrangians,
unsafe_lagrangians,
clf_degree=2,
cbf_degrees=[2],
x_equilibrium=x_equilibrium,
kappa_V=self.kappa_V,
kappa_b=self.kappa_b,
barrier_eps=self.barrier_eps,
S_ellipsoid_inner=S_ellipsoid_inner,
b_ellipsoid_inner=b_ellipsoid_inner,
c_ellipsoid_inner=c_ellipsoid_inner,
scale_min=1,
scale_max=50,
scale_tol=0.1,
solver_options=solver_options,
)
assert V is not None
assert b is not None
assert rho is not None
# Sample many points, make sure that {x | b[i] >= 0} doesn't intersect
# with the i'th unsafe region.
x_samples = 5 * np.random.randn(1000, 2) - np.array([[5, 0]])
self.check_unsafe_region_by_sample(b, x_samples)